
ar
X

iv
:q

ua
nt

-p
h/

00
02

06
6v

1
 2

4
Fe

b
20

00

Quantum lower bounds by quantum arguments

Andris Ambainis

Computer Science Division

University of California

Berkeley, CA 94720

e-mail: ambainis@cs.berkeley.edu∗

Abstract

We propose a new method for proving lower bounds on quantum query algorithms. Instead of a
classical adversary that runs the algorithm with one input and then modifies the input, we use a quantum
adversary that runs the algorithm with a superposition of inputs. If the algorithm works correctly, its
state becomes entangled with the superposition over inputs. We bound the number of queries needed
to achieve a sufficient entanglement and this implies a lower bound on the number of queries for the
computation.

Using this method, we prove two new Ω(
√

N) lower bounds on computing AND of ORs and inverting
a permutation and also provide more uniform proofs for several known lower bounds which have been
previously proven via variety of different techniques.

1 Introduction

In the query model, algorithms access the input only by querying input items and the complexity of the
algorithm is measured by the number of queries that it makes. Many quantum algorithms can be naturally
expressed in this model. The most famous examples are Grover’s algorithm[9] for searching an N -element
list with O(

√
N) quantum queries and period-finding which is the basis of Shor’s factoring algorithm[11, 17].

In the query setting, one can not only construct efficient quantum algorithms but also prove lower
bounds on the number of queries that any quantum algorithm needs. For example, it can be shown that
any algorithm solving the unordered search problem needs Ω(

√
N) queries[4]. (This implies that Grover’s

algorithm is optimal.)
The lower bounds in quantum query model provide insights into the limitations of quantum computing.

For example, the unordered search problem provides an abstract model for NP-complete problems and
the Ω(

√
N) lower bound of [4] provided evidence of the difficulty of solving these problems on a quantum

computer.
For two related problems - inverting a permutation (often used to model one-way permutation) and AND

of ORs only weaker lower bounds have been known. Both of these problems can be solved using Grover’s
algorithm with O(

√
N) queries for inverting a permutation and O(

√
N logN) queries for AND of ORs[7].

However, the best lower bounds have been Ω(3
√
N)[4] and Ω(4

√
N), respectively.

We present a new method for proving lower bounds on quantum query algorithms and use it to prove
Ω(

√
N) lower bounds for inverting a permutation and AND of ORs. It also provides a unified proof for

several other results that have been previously proven via variety of different techniques.

∗Supported by Berkeley Fellowship for Graduate Studies and, in part, by NSF grant CCR-9800024. This research was done

while visiting Microsoft Research.

1

http://arxiv.org/abs/quant-ph/0002066v1

In contrast to [4, 18] that use a classical adversary argument (an adversary runs the algorithm with one
input and, after that, changes the input slightly so that the correct answer changes but the algorithm does
not notice that), we use a quantum adversary. In other words, instead of running the algorithm with one
input, we run it with a superposition of inputs. This gives stronger bounds and can also simplify the proofs.

More formally, we consider a bipartite quantum system consisting of the algorithm and an oracle an-
swering algorithm’s queries. At the beginning, the algorithm part is in its starting state (normally |0〉), the
oracle part is in a uniform superposition over some set of inputs and the two parts are not entangled.

In the query model, the algorithm can either perform a unitary transformation that does not depend
on the input or a query transformation that accesses the input. The unitary transformations of the first
type become unitary transformations over the algorithm part of the superposition. The queries become
transformations entangling the algorithm part with the oracle part.

If the algorithm works correctly, the algorithm part becomes entangled with the oracle part because the
algorithm part must contain different answers for different inputs. We obtain lower bounds on quantum
algorithms by bounding the number of query transformations needed to achieve such entanglement.

Previously, two main lower bound methods were classical adversary[4] (called ’hybrid argument’ in [18])
and polynomials methods. The classical adversary/hybridmethod of [4, 18] starts with running the algorithm
on one input. Then the input is modified so that the behavior of algorithm does not change much but the
correct answer does change. That implies that the problem cannot be solved with a small number of queries.
Polynomials method[3] uses the fact that any function computable with a small number of queries can
be approximated by a polynomial of a small degree and then applies results about inapproximability by
polynomials.

Our “quantum adversary” method can be used to give more unified proofs for many (but not all) results
that were previously shown using different variants of hybrid and/or polynomials method.

There is also a new proof of the Ω(
√
N) lower bound on unordered search by Grover[10]. This proof is

based on considering the sum of distances between superpositions on different inputs. While the motivation
for Grover’s proof (sum of distances) is fairly different from ours (quantum adversary), these two methods
are, in fact, closely related. We discuss this relation in section 7.

2 The model

We consider computing a Boolean function f(x1, . . . , xN) : {0, 1}N → {0, 1} in the quantum query model[3].
In this model, the input bits can be accessed by queries to an oracle X and the complexity of f is the number
of queries needed to compute f .

A quantum computation with T queries is just a sequence of unitary transformations

U0 → O → U1 → O → . . .→ UT−1 → O → UT .

Uj’s can be arbitrary unitary transformations that do not depend on the input bits x1, . . . , xN . O are
query (oracle) transformations. To define O, we represent basis states as |i, b, z〉 where i consists of ⌈logN⌉
bits, b is one bit and z consists of all other bits. Then, O maps |i, b, z〉 maps to |i, b ⊕ xi, z〉. (i.e., the first
⌈logN⌉ bits are interpreted as an index i for an input bit xi and this input bit is XORed on the next qubit.)
We use Ox to denote the query transformation corresponding to an input x = (x1, . . . , xn).

Also, we can define that O maps |i, b, z〉 to (−1)b·xi |i, b, z〉 (i.e., instead of XORing xi on an extra qubit
we change phase depending on xi). It is well known that both definitions are equivalent up to a constant
factor: one query of the 1st type can be simulated with a one query of the 2nd type and one query of the 2nd

type can be simulated with 2 queries of the 1st type. For technical convenience, we use the 2nd definition in
most of this paper.

The computation starts with a state |0〉. Then, we apply U0, O, . . ., O, UT and measure the final state.
The result of the computation is the rightmost bit of the state obtained by the measurement.

2

The quantum computation computes f with bounded error if, for every x = (x1, . . . , xN), the probability
that the rightmost bit of UTOxUT−1 . . . OxU0|0〉 equals f(x1, . . . , xN) is at least 1− ǫ for some fixed ǫ < 1/2.

This model can be easily extended to functions defined on a larger set (for example, {1, . . . , N}) or
functions having more than 2 values. In the first case, we replace one bit b with several bits (⌈logN⌉ bits in
the case of {1, . . . , N}). In the second case, we measure several rightmost bits to obtain the answer.

3 The main idea

Let S be a subset of the set of possible inputs {0, 1}N . We run the algorithm on a superposition of inputs in
S. More formally, let HA be the workspace of the algorithm. We consider a bipartite system H = HA ⊗HI

where HI is an “input subspace” spanned by basis vectors |x〉 corresponding to inputs x ∈ S.
Let UTOUT−1 . . . U0 be the sequence of unitary transformations on HA performed by the algorithm

A (with U0, . . . , UT being the transformations that do not depend on the input and O being the query
transformations). We transform it into a sequence of unitary transformations onH. A unitary transformation
Ui on HA corresponds to the transformation U ′

i = Ui ⊗ I on the whole H. The query transformation O
corresponds to a transformation O′ that is equal to Ox on subspace HA ⊗ |x〉.

We perform the sequence of transformations U ′
TO

′U ′
T−1 . . . U

′
0 on the starting state

|ψstart〉 = |0〉 ⊗
∑

x∈S

αx|x〉.

Then, the final state is

|ψend〉 =
∑

x∈S

αx|ψx〉 ⊗ |x〉

where |ψx〉 is the final state of A = UTOUT−1 . . . U0 on the input x. This follows from the fact that
the restrictions of U ′

T , O
′, U ′

T−1, . . . , U
′
0 to HA ⊗ |x〉 are UT , Ox, UT−1, . . ., U0 and these are exactly the

transformations of the algorithm A on the input x.
In the starting state, the HA and HI parts of the superposition are unentangled. In the final state,

however, they must be entangled (if the algorithm works correctly). To see that, consider a simple example
where the algorithm has to recover the whole input.

Let αx = 1/
√
m (where m = |S|) for all x ∈ S. In the exact model (the algorithm is not allowed to

give the wrong answer even with a small probability), |ψx〉 must be |x〉|ϕx〉 where |x〉 is the answer of the
algorithm and |ϕx〉 are algorithm’s workbits. This means that the final state is

1√
m

∑

x∈S

|x〉|ϕx〉 ⊗ |x〉,

i.e., it is fully entangled state. In the bounded error model (the algorithm can give a wrong answer with a
probability at most ǫ), |ψx〉 must be (1− ǫ)|x〉|ϕx〉+ |ψ′

x〉 and the final state must be

1√
m

∑

x∈S

((1− ǫ)|x〉|ϕx〉+ |ψ′
x〉)⊗ |x〉

which is also quite highly entangled.
In the general case (we have to compute some function f instead of learning the whole input x), the parts

of HI corresponding to inputs with f(x) = z must become entangled with parts of HA corresponding to the
answer z.

Thus, we can show a lower bound on quantum query algorithms by showing that, given an unentan-
gled start state, we cannot achieve a highly entangled end state with less than a certain number of query
transformations.

3

Next, we describe more formally how we bound this entanglement. If we trace out HA from the states
|ψstart〉 and |ψend〉, we obtain mixed states over HI . Let ρstart and ρend be the density matrices describing
these states.

ρstart is a m × m matrix corresponding to the pure state
∑

x∈S αx|x〉. Entries of this matrix are
(ρstart)xy = α∗

xαy. In particular, if the start state is 1√
m

∑

x∈S |x〉, all entries of the ρstart are 1/m.

For ρend we have

Lemma 1 Let A be an algorithm that computes f with probability at least 1 − ǫ. Let x, y be such that
f(x) 6= f(y). Then,

|(ρend)xy| ≤ 2
√

ǫ(1− ǫ)|αx||αy|.

Proof: Let |ψx〉, |ψy〉 be the final superpositions of the algorithm A on inputs x, y. We take a basis for
HA consisting of the vectors of the form |z〉|v〉 where |z〉 is a basis for the answer part (the part which is
measured at the end of algorithm to obtain the answer) and |v〉 is a basis for the rest of HA (workbits). We
express |ψx〉 and |ψy〉 in this basis. Let

|ψx〉 =
∑

z,v

az,v|z〉|v〉, |ψy〉 =
∑

z,v

bz,v|z〉|v〉.

The final state of the algorithm is
∑

x∈S αx|ψx〉 ⊗ |x〉. By tracing out HA in the |z〉|v〉 basis, we get

(ρend)xy = αxαy

∑

z,v

a∗z,vbz,v.

Define ǫ1 =
∑

z,v:z 6=f(x) |az,v|2 and ǫ2 =
∑

z,v:z=f(x) |bz,v|2. Then, ǫ1 ≤ ǫ and ǫ2 ≤ ǫ (because these are

the probabilities that the measurement at the end of algorithm gives us a wrong answer: not f(x) for the
input x and f(x) for the input y). We have

|
∑

z,v

a∗z,vbz,v| ≤
∑

z,v

|az,v||bz,v| =
∑

z,v:z=f(x)

|az,v||bz,v|+
∑

z,v:z 6=f(x)

|az,v||bz,v|

≤
√

∑

z,v:z=f(x)

|az,v|2
√

∑

z,v:z=f(x)

|bz,v|2 +
√

∑

z,v:z 6=f(x)

|az,v|2
√

∑

z,v:z 6=f(x)

|bz,v|2 =
√

(1− ǫ1)ǫ2 +
√

ǫ1(1 − ǫ2).

This expression is maximized by ǫ1 = ǫ2 = ǫ, giving us 2
√

ǫ(1− ǫ). Therefore,

|(ρend)xy| = |αx||αy||
∑

z,v

a∗z,vbz,v| ≤ 2
√

ǫ(1− ǫ)|αx||αy|.

✷

In particular, if |ψstart〉 is the uniform 1√
m

∑

x∈S |x〉, we have (ρend)xy ≤ 2
√

ǫ(1− ǫ)/m. Note that, for

any ǫ < 1/2, 2
√

ǫ(1− ǫ) < 1. Thus, if the algorithm A works correctly, the absolute value of every entry
of ρend that corresponds to inputs x, y with f(x) 6= f(y) must be smaller than the corresponding entry of
ρstart by a constant fraction.

To prove a lower bound on the number of queries, we bound the change in ρxy caused by one query.
Together with Lemma 1, this implies a lower bound on the number of queries.

4

4 Lower bound on search

Next, we apply this technique to several problems. We start with the simplest case: the lower bound on
unordered search problem (Theorem 1). Then, we show two general lower bound theorems (Theorems 2 and
6).

Each of these theorems is a special case of the next one: Theorem 2 implies Theorem 1 and Theorem 6
implies Theorem 2. However, more general theorems have more complicated proofs and it is easier to see the
main idea in the simple case of unordered search. Therefore, we show this case first, before general theorems
2 and 6.
Problem: We are given x1, . . . , xN ∈ {0, 1} and we have to find i such that xi = 1.

Theorem 1 [4] Any quantum algorithm that finds i with probability 1− ǫ uses Ω(
√
N) queries.

Proof: Let S be the set of inputs with one xi equal to 1 and the rest 0. Then, |S| = N and HI is an
N -dimensional space. To simplify the notation, we use |i〉 to denote the basis state of HI corresponding to
the input (x1, . . . , xN) with xi = 1.

Let ρk be the density matrix of HI after k queries. Note that ρ0 = ρstart and ρT = ρend. We consider
the sum of absolute values of all its off-diagonal entries Sk =

∑

x,y,x 6=y |(ρk)xy|. We will show that

1. S0 = N − 1,

2. ST ≤ 2
√

ǫ(1− ǫ)(N − 1)

3. Sk−1 − Sk ≤ 2
√
N − 1 for all k ∈ {1, . . . , T }.

This implies that the number of queries T is at least (1− 2
√

ǫ(1− ǫ))
√
N − 1/2.

The first two properties follow straightforwardly from the results at the end of section 3. N ×N matrices
ρi have N(N − 1) non-diagonal entries and each of these entries is 1/N in ρstart and at most 2

√

ǫ(1− ǫ)/N
in ρend (Lemma 1 together with the fact that each of these entries corresponds to two inputs with different
answers).

It remains to prove the third part. First, notice that

Sk−1 − Sk =
∑

x,y:x 6=y

|(ρk−1)xy| −
∑

x,y:x 6=y

|(ρk)xy| ≤
∑

x,y:x 6=y

|(ρk−1)xy − (ρk)xy|.

Therefore, it suffices to bound the sum of |(ρk−1)xy − (ρk)xy|.
A query corresponds to representing the pure state before the query as

|ψk−1〉 =
∑

i,z

√
pi,z|i, z〉 ⊗ |ψi,z〉,

|ψi,z〉 =
n
∑

j=1

αi,z,j |j〉

and changing the phase on the |i〉 component of |ψi,z〉. If we consider just the HI part, the density matrix
ρk−1 before the query is

∑

i,z pi,z|ψi,z〉〈ψi,z |. The density matrix ρk after the query is
∑

i,z pi,z|ψ′
i,z〉〈ψ′

i,z |
where

|ψ′
i,z〉 =

∑

j 6=i

αi,z,j |j〉 − αi,z,i|i〉.

Consider ρi,z = |ψi,z〉〈ψi,z | and ρ′i,z = |ψ′
i,z〉〈ψ′

i,z |. Then, ρk−1 =
∑

i,z pi,zρi,z and ρk =
∑

i,z pi,zρ
′
i,z.

5

The only entries where ρi,z and ρ′i,z differ are the entries in the ith column and the ith row. These entries
are α∗

i,z,jαi,z,i in ρi,z and -α∗
i,z,jαi,z,i in ρ

′
i,z. The sum of absolute values of the differences of all entries in

the ith row is
∑

j 6=i

2|α∗
i,z,jαi,z,i| ≤ 2|αi,z,i|

∑

j 6=i

|αi,z,j |.

Similarly, the sum of absolute values of the differences of all entries in the ith column is at most 2|αi,z,i|
∑

j 6=i |αi,z,j |
as well. So, the sum of absolute values of all differences is at most 4|αi,z,i|

∑

j 6=i |αi,z,j |.
By Cauchy-Schwartz inequality,

∑

j 6=i

|αi,z,j | ≤
√
N − 1

√

∑

j 6=i

|αi,z,j |2 =
√
N − 1

√

1− |αi,z,i|2.

Therefore,
∑

j 6=i

4|α∗
i,z,jαi,z,i| ≤ 4

√
N − 1|αi,z,i|

√

1− |αi,z,i|2 ≤ 2
√
N − 1.

Define Si,z =
∑

x,y:x 6=y |(ρi,z)xy − (ρ′i,z)xy|. Then, we have just shown Si,z ≤ 2
√
N − 1. This implies a

bound on the sum
∑

x,y:x 6=y |(ρk−1)xy − (ρk)xy|.
∑

x,y:x 6=y

|(ρk−1)xy − (ρk)xy| =
∑

x,y:x 6=y

|
∑

i,z

pi,z(ρi,z)xy −
∑

i,z

pi,z(ρ
′
i,z)xy|

≤
∑

i,z

pi,z
∑

x,y:x 6=y

|(ρi,z)xy − (ρ′i,z)xy| ≤
∑

i,z

pi,z2
√
N − 1 = 2

√
N − 1.

This completes the proof. ✷

5 The general lower bound

5.1 The result

Next, we obtain a general lower bound theorem.

Theorem 2 Let f(x1, . . . , xN) be a function of n {0, 1}-valued variables and X,Y be two sets of inputs such
that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y be such that

1. For every x ∈ X, there exist at least m different y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y , there exist at least m′ different x ∈ X such that (x, y) ∈ R.

3. For every x ∈ X and i ∈ {1, . . . , n}, there are at most l different y ∈ Y such that (x, y) ∈ R and
xi 6= yi.

4. For every y ∈ Y and i ∈ {1, . . . , n}, there are at most l′ different x ∈ X such that (x, y) ∈ R and
xi 6= yi.

Then, any quantum algorithm computing f uses Ω(
√

mm′

ll′) queries.

Proof: Consider the set of inputs S = X ∪ Y and the superposition

1
√

2|X |
∑

x∈X

|x〉 + 1
√

2|Y |
∑

y∈Y

|y〉

over this set of inputs. Let Si be the sum of |(ρi)xy| over all x, y such that (x, y) ∈ R. Then, the theorem
follows from

6

1. S0 − ST ≥ (1− 2
√

ǫ(1− ǫ))
√
mm′

2. Sk−1 − Sk ≤
√
ll′

To show the first part, let (x, y) ∈ R. Then, (ρ0)xy = 1√
|X||Y |

and |(ρT)xy| ≤ 2
√

ǫ(1−ǫ)√
|X||Y |

(Lemma 1).

Therefore,

|(ρ0)xy| − |(ρT)xy| ≥
1− 2

√

ǫ(1− ǫ)
√

|X ||Y |
.

The number of (x, y) ∈ R is at least max(|X |m, |Y |m′) because for every x ∈ X , there are at least m possible
y ∈ Y and, for every y ∈ Y , there are at least m′ possible x ∈ X . We have

max(|X |m, |Y |m′) ≥ |X |m+ |Y |m′

2
≥
√

|X ||Y |mm′,

S0 − ST ≥
√

|X ||Y |mm′ 1− 2
√

ǫ(1− ǫ)
√

|X ||Y |
= (1 − 2

√

ǫ(1− ǫ))
√
mm′.

Next, we prove the second part. Similarly to the previous proof, we represent

|ψk−1〉 =
∑

i,z

√
pi,z|i, z〉 ⊗ |ψi,z〉,

|ψi,z〉 =
∑

x∈S

αi,z,x|x〉.

A query corresponds to changing the sign on all components with xi = 1. It transforms |ψi,z〉 to

|ψ′
i,z〉 =

∑

x∈S:xi=0

αi,z,x|x〉 −
∑

x∈S:xi=1

αi,z,x|x〉.

Let ρi,z = |ψi,z〉〈ψi,z | and ρ′i,z = |ψ′
i,z〉〈ψ′

i,z |. We define Si,z =
∑

(x,y)∈R |(ρi,z)xy − (ρ′i,z)xy|.
If xi = yi, then (ρi,z)xy and (ρ′i,z)xy are the same. If one of xi, yi is 0 and the other is 1, (ρi,z)xy =

−(ρ′i,z)xy and |(ρi,z)xy − (ρ′i,z)xy| = 2|(ρi,z)xy| = 2|αi,z,x||αi,z,y|. Therefore,

Si,z =
∑

(x,y)∈R:xi 6=yi

2|αi,z,x||αi,z,y| ≤
∑

(x,y)∈R:xi 6=yi

√

l′

l
|αi,z,x|2 +

√

l

l′
|αi,z,y|2

≤
∑

x∈X

l

√

l′

l
|αi,z,x|2 +

∑

y∈Y

l′
√

l

l′
|αi,z,y|2 =

√
ll′

∑

x∈X∪Y

|αi,z,x|2 =
√
ll′.

Similarly to the previous proof, this implies the same bound on Sk−1 − Sk. ✷

5.2 Relation to block sensitivity bound

Our Theorem 2 generalizes the block sensitivity bound of [3, 18].
Let f be a Boolean function and x = (x1, . . . , xn) an input to f . For a set S ⊆ {1, . . . , n}, x(S) denotes

the input obtained from x by flipping all variables xi, i ∈ S. f is sensitive to S on input x if f(x) 6= f(x(S)).
The block sensitivity of f on input x is the maximal number t such that there exist t pairwise disjoint

sets S1, S2, . . ., St such that, for all i ∈ {1, . . . , t}, f is sensitive to Si on x. We denote it by bsx(f). The
block sensitivity of f , bs(f) is just the maximum of bsx(f) over all inputs x[14].

7

Theorem 3 [3, 18] Let f be any Boolean function. Then, any quantum query algorithm computing f uses
Ω(
√

bs(f)) queries.

To see that this is a particular case of Theorem 2, let x be the input on which f achieves bs(f) block
sensitivity. Then, we can take X = {x} and Y = {x(S1), . . . , x(Sbs(f))}.

Let R = {(x, x(S1)), (x, x(S2)), . . . , (x, x(Sbs(f)))}. Then, m = bs(f), m′ = 1. Also, l = 1 (because, by the
definition of the block sensitivity, m blocks of input variables have to be disjoint) and l′ = 1. Therefore, we

get mm′

ll′ = bs(f) and Theorem 2 gives the Ω(
√

bs(f)) lower bound for any Boolean function f .
In the next subsection we show some problems for which our method gives a better bound than the

block-sensitivity method.

5.3 Applications

For a first application, consider AND of ORs:

f(x1, . . . , xN) = (x1ORx2 . . . ORx√N)AND

(x√N+1 . . . x2
√
N)AND . . .AND(xN−

√
N+1OR . . .ORxN)

where x1, . . . , xN ∈ {0, 1}.
f can be computed with O(

√
N logN) queries by a two-level version of Grover’s algorithm (see [7]).

However, a straightforward application of lower bound methods from [4, 3] only gives an Ω(4
√
N) bound

because the block sensitivity of f is Θ(
√
N) and the lower bound on the number of queries given by hybrid

or polynomials method is the square root of block sensitivity[3, 18]. Our method gives

Theorem 4 Any quantum algorithm computing AND of ORs uses Ω(
√
N) queries.

Proof: For this problem, let X be the set of all x = (x1, . . . , xn) such that, for every i ∈ {1, . . . ,
√
N},

there is exactly one j ∈ {1, . . . ,√n} with x(i−1)
√
N+j = 1. Y is the set of all y = (y1, . . . , yn) such that

y(i−1)
√
N+1 = . . . = yi

√
N = 0 for some i and, for every i′ 6= i, there is a unique j ∈ {1, . . . ,

√
N} with

y(i−1)
√
N+j = 1. R consists of all pairs (x, y), x ∈ X , y ∈ Y such that there is exactly one i with xi 6= yi.

Then, m = m′ =
√
n because, given x ∈ X , there are

√
n 1s that can be replaced by 0 and replacing

any one of them gives some y ∈ Y . Conversely, if y ∈ Y , there are
√
n ways to add one more 1 so that we

get x ∈ X . On the other hand, l = l′ = 1 because, given x ∈ X (or y ∈ Y) and i ∈ {1, . . . , n}, there is only

one input that differs from x only in the ith position. Therefore,
√

mm′

ll′ =
√
n and the result follows from

Theorem 2. ✷
Our theorem can be also used to give another proof for the following theorem of Nayak and Wu[13].

Theorem 5 [13] Let f : {0, 1, . . . , n− 1} → {0, 1} be a Boolean function that is equal to 1 either at exactly
n/2 points of the domain or at exactly (1 + ǫ)n/2 points. Then, any quantum algorithm that determines
whether the number of points where f(x) = 1 is n/2 or (1 + ǫ)n/2 uses Ω(1ǫ) queries.

This result implies lower bounds on the number of quantum queries needed to compute (or to approx-
imate) the median of n numbers[13]. It was shown in [13] using polynomials method. No proof that uses
adversary arguments similar to [4, 18] is known.

With our “quantum adversary” method, Theorem 5 can be proven in similarly to other theorems in this
paper.
Proof: Let X be the set of all f that are 1 at exactly n/2 points, Y be the set of all f that are 1 at (1+ǫ)n/2
points and R be the set of all (f, f ′) such that f ∈ X , f ′ ∈ Y and they differ in exactly ǫn/2 points.

8

Then, m =
(n/2
ǫn/2

)

and m′ =
((1+ǫ)n/2

ǫn/2

)

. On the other hand, l =
(n/2−1
ǫn/2−1

)

and l′ =
((1+ǫ)n/2−1

ǫn/2−1

)

. Therefore,

mm′

ll′
=

(

n/2
ǫn/2

)(

(1+ǫ)n/2
ǫn/2

)

(n/2−1
ǫn/2−1

)((1+ǫ)n/2−1
ǫn/2−1

)
=

n
2
(1+ǫ)n

2
ǫn
2

ǫn
2

=
1 + ǫ

ǫ2
>

1

ǫ2
.

By Theorem 2, the number of queries is Ω(
√

mm′

ll′) = Ω(1/ǫ).
✷

There are several other known lower bounds that also follow from Theorem 2. In particular, Theorem 2
implies Ω(N) lower bounds for MAJORITY and PARITY of [3].

6 Inverting a permutation

6.1 Extension of Theorem 2

For some lower bounds (like inverting a permutation), we need a following extension of Theorem 2. This is
our most general result.

Theorem 6 Let f(x1, . . . , xN) be a function of n variables with values from some finite set and X,Y be two
sets of inputs such that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y be such that

1. For every x ∈ X, there exist at least m different y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y , there exist at least m′ different x ∈ X such that (x, y) ∈ R.

Let lx,i be the number of y ∈ Y such that (x, y) ∈ R and xi 6= yi and ly,i be the number of x ∈ X such that
(x, y) ∈ R and xi 6= yi. Let lmax be the maximum of lx,ily,i over all (x, y) ∈ R and i ∈ {1, . . . , N} such that

xi 6= yi. Then, any quantum algorithm computing f uses Ω(
√

mm′

lmax
) queries.

The parameters l and l′ of Theorem 2 are just maxx∈X,i lx,i and maxy∈Y,i ly,i. It is easy to see that

max
(x,y)∈R,xi 6=yi

lx,ily,i ≤ max
x,i

lx,imax
y,i

ly,i.

Therefore, the lower bound given by Theorem 6 is always greater than or equal to the lower bound of
Theorem 2. However, Theorem 6 gives a better bound if, for every (x, y) ∈ R and i, at least one of lx,i or
ly,i is less than its maximal value (which happens for inverting a permutation).

Also, Theorem 6 allows {1, . . . , N}-valued variables instead of only {0, 1}-valued in Theorem 2.
Proof: Similarly to Theorem 6, we consider the set of inputs S = X ∪ Y and the superposition

1
√

2|X |
∑

x∈X

|x〉 + 1
√

2|Y |
∑

y∈Y

|y〉

over this set of inputs. Let Sk be the sum of |(ρk)xy| over all x, y such that (x, y) ∈ R. The theorem follows
from

1. ST − S0 ≥ (1− 2
√

ǫ(1− ǫ))
√
mm′

2. Sk−1 − Sk ≤
√
lmax

9

The first part is shown in the same way as in the proof of Theorem 2. For the second part, express the
state before the kth query as

|ψk−1〉 =
∑

i,a,z,x

αi,a,z,x|i, a, z〉 ⊗ |x〉

where i is the index of the input variable xi being queried, a are logN bits for the answer, z is the part of
HA that does not participate in the query (extra workbits) and x is HI part of the superposition. A query
changes this to

|ψk〉 =
∑

i,a,z,x

αi,a,z,x|i, a⊕ xi, z〉 ⊗ |x〉 =
∑

i,a,z,x

αi,a⊕xi,z,x|i, a, z〉 ⊗ |x〉.

Denote
|ψi,a,z〉 =

∑

x

αi,a,z,x|x〉, |ψ′
i,a,z〉 =

∑

x

αi,a⊕xi,z,x|x〉.

ρk−1,i =
∑

a,z |ψi,a,z〉〈ψi,a,z | and ρk,i =
∑

a,z |ψ′
i,a,z〉〈ψ′

i,a,z | are the parts of ρk−1 and ρk corresponding to

querying i. We have ρk−1 =
∑n

i=1 ρk−1,i and ρk =
∑n

i=1 ρk,i.
Let Sk,i be sum of absolute values of differences |(ρk−1,i)xy − (ρk,i)xy| over all (x, y) ∈ R. Then, for every

x, y,

|(ρk−1)xy| − |(ρk)xy| ≤ |(ρk−1)xy − (ρk)xy| = |
∑

i

(ρk−1,i)xy −
∑

i

(ρk,i)xy| ≤
∑

i

|(ρk−1,i)xy − (ρk,i)xy|.

Therefore (by summing over all such x and y), Sk−1−Sk ≤∑i Sk,i and we can bound Sk−1−Sk by bounding
Sk,i.

Let x, y be two inputs such that xi = yi. Then, it is easy to see that

(ρk−1,i)xy =
∑

a,z

α∗
i,a,z,xαi,a,z,y =

∑

a,z

α∗
i,a⊕xi,z,xαi,a⊕yi,z,y = (ρk,i)xy.

Therefore, the only non-zero entries in Sk,i are the entries corresponding to (x, y) ∈ R with xi 6= yi. The
sum of their differences |(ρk−1,i)xy − (ρk,i)xy| is at most the sum of absolute values of such entries in ρk−1,i

plus the sum of absolute values of them in ρk,i. We bound these two sums.
First, any density matrix is semipositive definite. This implies that

|(ρk−1,i)xy| ≤
1

2

(√

ly,i
lx,i

|(ρk−1,i)xx|+
√

lx,i
ly,i

|(ρk−1,i)yy|
)

.

for any x and y. Therefore,

∑

x,y:(x,y)∈R

xi 6=yi

|(ρk−1,i)xy| ≤
1

2

∑

x,y:(x,y)∈R

xi 6=yi

√

ly,i
lx,i

|(ρk−1,i)xx|+
√

lx,i
ly,i

|(ρk−1,i)yy| =
1

2

∑

x∈X∪Y

lx,i

√

ly,i
lx,i

|(ρk−1,i)xx|

=
1

2

∑

x∈X∪Y

√

lx,ily,i|(ρk−1,i)xx| ≤
1

2

√

lmax

∑

x∈X∪Y

|(ρk−1,i)xx| =
√
lmax

2
Trρk−1,i.

The same argument shows that a similar sum is at most
√
lmax

2 Trρk,i for the matrix ρk,i. Therefore,

Sk−1 − Sk ≤
∑

i

Sk,i ≤
∑

i

√
lmax

2
(Trρk−1,i + Trρk,i) =

√
lmax

2
(Trρk−1 + Trρk) =

√

lmax.

This completes the proof. ✷

10

6.2 Application

We use Theorem 6 to prove a lower bound for inverting a permutation[4].
Problem: We are given x1, . . . , xN ∈ {1, . . . , N} such that (x1, . . . , xN) is a permutation of {1, . . . , N}. We
have to find the i such that xi = 1.

This problem was used in [4] to show NPA ∩ co−NPA 6⊆ BQPA for an oracle A. It is easy to see that
it can be solved by Grover’s algorithm (search for i with xi = 1). This takes O(

√
N) queries.

However, the Ω(
√
N) lower bound proof for search problem from [4] does not work for this problem. [4]

showed a weaker Ω(3
√
N) bound with a more complicated proof.

Theorem 7 Any quantum query algorithm that inverts a permutation with probability 1 − ǫ uses Ω(
√
N)

queries.

Proof: Let X be the set of all permutations x with xi = 1 for an even i and Y be the set of all permutations
y with yi = 1 for an odd i. (x, y) ∈ R if x = (x1, . . . , xN), y = (y1, . . . , yN) and there are i, j, i 6= j such
that xi = yj = 1, xj = yi and all other elements of x and y are the same.

For every x ∈ X , there are m = n/2 y with (x, y) ∈ R. Similarly, for every y ∈ Y , there are m′ = n/2 x
such that (x, y) ∈ R.

Finally, if we take a pair (x, y) ∈ R and a location i such that xi 6= yi, then one of xi, yi is 1. We assume
that xi = 1. (The other case is similar.) Then, there are n/2 y′ such that (x, y′) ∈ R and xi 6= y′i. However,
the only x′ such that (x′, y) ∈ R and x′i 6= yi is x

′ = x. (Any x′ such that (x′, y) ∈ R and x′i 6= y′i must also
have x′j 6= yj where j is the variable for which yj = 1 and x is the only permutation that differs from y only
in these two places.)

Therefore, lx,i = n/2, ly,i = 1 and lmax = n/2. By Theorem 6, this implies that any quantum algorithm

needs Ω(
√

n2

n) = Ω(
√
n) queries. ✷

7 Relation to Grover’s proof

Grover[10] presents a proof of the Ω(
√
n) lower bound on the search problem based on considering the sum

of distances
∆(t) =

∑

i,j∈{1,...,n},i6=j

‖φti − φt0‖2

where φti is the state of the algorithm after t queries on the input x1 = . . . = xi−1 = 0, xi = 1, xi+1 = . . . =
xn = 1 and φt0 is the state of the algorithm after t queries on the input x1 = . . . = xn = 0.

Grover shows that, after t queries, ∆(t) ≤ 4t2. If the algorithm outputs the correct answer with proba-
bility 1, the final vectors φt1, . . ., φ

t
n have to be orthogonal, implying that ∆(t) ≥ 2N − 2

√
N (cf. [10]). This

implies that the number of queries must be Ω(
√
N).

A similar idea (bounding a certain sum of distances) has been also used by Shi[16] to prove lower bounds
on the number of quantum queries in terms of average sensitivity.

These “distance-based” ideas can be generalized to obtain another proof of our Theorems 2 and 6.
Namely, for Theorem 2, one can take

∆(t) =
∑

(x,y)∈R

‖φtx − φty‖2

where φtx, φ
t
y are the states of the algorithm after t steps on the inputs x and y. Then,

‖φtx − φty‖2 = 1− 〈φtx|φty〉2.

11

Let ρt be the density matrix of HI after t steps. By writing out the expressions for 〈φtx|φty〉 and (ρt)xy, we
can see that

(ρt)xy =
1

4|X ||Y | 〈φ
t
x|φty〉.

This shows that the two quantities (the sum of entries in the density matrix and the sum of distances) are
quite similar. Indeed, we can give proofs for Theorems 2 and 6 in terms of distances and their sums ∆(t).
(Namely, ∆(0) = 0 before the first query, ∆(T) should be large if the algorithm solves the problem with
T queries and we can bound the difference ∆(t) −∆(t − 1). This gives the same bounds as bounding the
entries of density matrices.)

Thus, Theorems 2 and 6 have two proofs that are quite similar algebraically but come from two completely
different sources: running a quantum algorithm with a superposition of inputs (our “quantum adversary”)
and looking at it from a geometric viewpoint (sum of distances).

The “quantum adversary” approach may be more general because one could bound other quantities
(besides the sum of entries in the density matrix) which have no simple geometric interpretation.

8 Conclusion and open problems

We introduced a new method for proving lower bounds on quantum algorithms and used it to prove tight
(up to a multiplicative or logarithmic factor) lower bounds on Grover’s search and 3 other related problems.
Two of these bounds (Grover’s search and distinguishing between an input with 1/2 of values equal to 1 and
1/2+ ǫ values equal to 1) were known before. For two other problems (inverting a permutation and AND of
ORs), only weaker bounds were known. One advantage of our method is that it allows to prove all 4 bounds
in a similar way. (Previous methods were quite different for different problems.)

Some open problems:

1. Collision problem[5].

We are given a function f : {1, . . . , n} → {1, . . . , n/2} and have to find i, j such that f(i) = f(j).
Classically, this can be done by querying f(x) for O(

√
n) random values of x and it is easy to see

that this is optimal. There is a quantum algorithm that solves this problem with O(3
√
n) queries[5].

However, there is no quantum lower bound at all for this problem (except the trivial bound of Ω(1)).

The collision problem is an abstraction for collision-resistant hash functions. If it can be solved with
O(log n) queries, there no hash function is collision-resistant against quantum algorithms.

The exact argument that we gave in this paper (with bounding a subset of the entries in the density
matrix) does not carry over to the collision problem. However, it may be possible to use our idea of
running the algorithm with a superposition of oracles together with some other way of measuring the
entanglement between the algorithm and the oracle.

2. Simpler/better lower bound for binary search.

It may be possible to simplify other lower bounds proven previously by different methods. In some
cases, it is quite easy to reprove the result by our method (like Theorem 5) but there are two cases in
which we could not do that. The first is the bound of [6] on the number of queries needed to achieve
very small probability of error in database search problem. The second is the lower bound on the
ordered search[1]. It seems unlikely that our technique can be useful in the first case but there is a
chance that some variant of our idea may work for ordered search (achieving both simpler proof and
better constant under big-Ω).

3. Communication complexity of disjointness.

12

Quantum communication complexity is often related to query complexity[7]. Can one use our method
(either “quantum adversary” or distance-based formulation) to prove lower bounds on quantum com-
munication complexity?

A particularly interesting open problem in quantum communication complexity is set disjointness.
The classical (both deterministic and probabilistic) communication complexity of set disjointness is
Ω(n)[12, 15]. There is a quantum protocol (based on Grover’s search algorithm) that computes set
disjointness with an O(

√
n logn) communication[7] but the best lower bound is only Ω(logn)[8, 2].

Acknowledgements. I would like to thank Dorit Aharonov, Daniel Gottesman, Ashwin Nayak, Umesh
Vazirani and Ronald de Wolf for useful comments.

References

[1] A. Ambainis. A better lower bound for quantum algorithms searching an ordered list. Proceedings of
FOCS’99, pages 352-357. Also1 quant-ph/9902053.

[2] A. Ambainis, L. Schulman, A. Ta-Shma, U. Vazirani, A. Wigderson. Quantum communication com-
plexity of sampling. Proceedings of FOCS’98, pages 342-351.

[3] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf. Quantum lower bounds by polynomials.
Proceedings of FOCS’98, pages 352-361. Also quant-ph/9802049.

[4] C. Bennett, E. Bernstein, G. Brassard, U. Vazirani. Strengths and weaknesses of quantum computing.
SIAM Journal on Computing, 26(3):1510-1523, 1997, quant-ph/9701001.

[5] G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem. ACM SIGACT
News (Cryptology Column), 28:14–19, 1997. quant-ph/9705002.

[6] H. Buhrman, R. Cleve, R. de Wolf, C. Zalka. Bounds for small-error and zero-error quantum algorithms.
Proceedings of FOCS’99, pages 358-368. Also cs.CC/9904019.

[7] H. Buhrman, R. Cleve, A. Wigderson. Quantum vs. classical communication and computation. Proceed-
ings of STOC’98, pages 63-68. Also quant-ph/9802046.

[8] H. Buhrman, R. de Wolf. Communication complexity lower bounds by polynomials. cs.CC/9910010.

[9] L. Grover. A fast quantum mechanical algorithm for database search, Proceedings of the 28th ACM
Symposium on Theory of Computing, pp. 212-219, 1996, quant-ph/9605043.

[10] L. Grover. How fast can a quantum computer search? quant-ph/9809029.

[11] A. Yu. Kitaev. Quantum measurements and the Abelian stabilizer problem. quant-ph/9511026.

[12] B. Kalyanasundaram, G. Schnitger. The probabilistic communication complexity of set intersection.
Proceedings of Structures’87, pages 41-49, 1987.

[13] A. Nayak and F. Wu. The quantum query complexity of approximating the median and related statistics.
In Proceedings of 31th STOC, pages 384–393, 1999. Also quant-ph/9804066.

[14] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20:999-1007, 1991. Also
STOC’89.

1quant-ph preprints are available at http://www.arxiv.org/archive/quant-ph

13

http://arxiv.org/abs/quant-ph/9902053
http://arxiv.org/abs/quant-ph/9802049
http://arxiv.org/abs/quant-ph/9701001
http://arxiv.org/abs/quant-ph/9705002
http://arxiv.org/abs/cs/9904019
http://arxiv.org/abs/quant-ph/9802046
http://arxiv.org/abs/cs/9910010
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9809029
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9804066
http://www.arxiv.org/archive/quant-ph

[15] A. Razborov. On the distributional complexity of disjointness. Theoretical Computer Science, 106:385-
90, 1992. Also ICALP’90.

[16] Y. Shi. Lower bounds of quantum black-box complexity and degree of approximation polynomials by
influence of Boolean variables. quant-ph/9904107.

[17] P. Shor. Polynomial time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing. 26:1484-1509, 1997. Also FOCS’94.

[18] U. Vazirani. On the power of quantum computation. Philosophical Transactions of the Royal Society of
London, Series A: Mathematical and Physical Sciences, 356:1759-1768, August 1998.

14

http://arxiv.org/abs/quant-ph/9904107

